
Integrating Refactoring Recommendation

into an IDE: A JetBrains Story

Timofey Bryksin

International Workshop on Refactoring, 2021



● 10+ million users

● 99 companies from the Fortune Top 100 are clients

● 30 products
○ IDEs

○ tools for team work

○ Kotlin

● 1500+ employees in 9 offices around the world

● 18 research labs

https://www.jetbrains.com/lp/annualreport-2020/
2

About JetBrains

—

https://www.jetbrains.com/lp/annualreport-2020/


ML4SE Lab

—
● Founded in Spring 2017

● Data-driven SE
○ we help computers leverage data

to help people program other computers

● 21 researchers
○ + almost 20 interns from various universities

3



● Three stories of refactoring-related IDE features
○ motivation

○ design and implementation details

○ challenges of adoption

○ takeaways for the research community

4

What this talk is about

—



5

Typical Feature Pipeline

—



6



7

Golubev et al. One Thousand and One Stories: A Large-Scale Survey of Software Refactoring, ESEC/FSE 2021

In the past month, how often have you performed any code 

refactoring? (Out of 1,181 respondents)

During this time, did you ever refactor code for an hour or more in a 

single session? (Out of 1,145 respondents) 



Refactoring Recommendation

—

88



Story #1: ArchitectureReloaded (2017-2018)



The Plan

—
● Find the best recommendation algorithm

● Build an IntelliJ IDEA plugin around

● See how it works

● …

● PROFIT!

10



Types of Evaluation We Faced

—
● Case studies on small projects where all refactorings are obvious

● Expert assessment of the algorithm’s result on a real-world project

● Tracking software metrics

● Evaluation on refactorings mined from historical data

● Evaluation on a labeled dataset

● Evaluation on a dataset with artificially introduced code smells

11
Tsantalis et al. Ten Years of JDeodorant: Lessons Learned from the Hunt for Smells (2018)



ArchitectureReloaded

—
● Targeting the Move Method refactoring

● Implemented three different ML-based approaches
○ community detection

○ clustering in a metric-based vector space

● Tons of implementation tweeks

● Applied ensemble/voting to get better results

12



Takeaways

—
● Providing an open-source replication package is essential

○ 10 pages are almost never enough to describe everything

● A good benchmark is half of the solution
○ invest in a comparison platform

○ collect datasets for different code smells/refactoring types

● Refactoring recommendations vs Hints for improvement
○ chains of refactoring operations

○ integration with IDE is key

13



Story #2: IntelliJDeodorant (2019-2020)



JDeodorant

—
● Feature Envy, Long Method, Type/State Checking, God Class, Duplicated 

code

● High precision and recall

● Based on Eclipse JDT

15



JDeodorant → IntelliJDeodorant

—

16



Collection of User Logs

—

● Based on the FUS (Feature Usage Statistics) infrastructure

● Saving description on the code instead of the code itself

● Everything we collect is completely anonymous

17



Example of an Extract Method Refactoring

—
What we get:

extracted_statements_count = 5

new_method_length = 8 

new_method_parameters_count = 1

original_method_length_before = 53

original_method_length_after = 47

original_method_parameters_count = 4

18More on collecting logs: https://blog.jetbrains.com/author/roman-poborchiy-jetbrains-com/

https://blog.jetbrains.com/author/roman-poborchiy-jetbrains-com/


The IntelliJDeodorant Plugin

—

19



20

Back to the Pipeline

—



https://www.jetbrains.com/resources/eap/

21

Early Access Program

—

https://www.jetbrains.com/resources/eap/


PhpStorm 2021.2 EAP

—
● Showing several 

candidates in a 

popup window

22Tsantalis and Chatzigeorgiou. Identification of extract method refactoring opportunities for the decomposition of methods (JSS, 2011)



PhpStorm 2021.3 EAP

—
● Showing several 

best candidates

● Improved UX

23Haas and Hummel. Deriving Extract Method Refactoring Suggestions for Long Methods (SWQD, 2016)



24

http://drive.google.com/file/d/1DfWxK2rwGnzd3ECaXEEx5PDJ69u7wMvi/view


25

PhpStorm 2021.3 EAP

—



Takeaways

—
● What do developers actually want from the refactoring recommendation tool?

○ identify the places where refactoring is needed indeed

○ show only a couple of the best suggestions (maybe just even one)

● We should think not only about what to suggest but also how
○ refactoring tools should not break the flow

○ are the current tools implemented in the best way possible?

■ Gail Murphy’s ICSME’21 Keynote

● Performance is as important as precision
○ filtering out unsuitable candidates as early as possible

○ use the data pre-calculated by the IDE

26

https://www.youtube.com/watch?v=aPlJv7FSpkA


Story #3: RefactorInsight (2020-...)



Mining Refactorings from VCS

—
● Several tools exist

○ RefactoringMiner, RefDiff, Ref-Finder, …

● Perfect for empirical studies

● Could we benefit from this data within an IDE?
○ merging changes

○ data-driven code migrations

○ code reviews

○ exploring the project history

○ ...

28



RefactorInsight

—
● Uses RefactoringMiner to detect refactorings in Java code

● Supported use cases
○ shows the list of detected refactorings in each commit or pull-request

○ shows the history of refactorings for methods and classes

29



Showing the List of Detected Refactorings

—

30

http://drive.google.com/file/d/1SEOpb_GZXTy5Bm5e_5CXv_SJga__0_QC/view


31

Showing the History of Refactorings for Methods and Classes

—

http://drive.google.com/file/d/1ZSKfTQBLxQ5b_55unffjsSiZHKSGH81t/view


Feedback from the IntelliJ VCS Team

—
● Add Kotlin support

○ developed the kotlinRMiner library

● Make the diff window aware of refactoring

32



Refactoring-aware Diff Window

—

33

http://drive.google.com/file/d/174XVvL0Fjt74xQPXndCgJKIidLydLWF0/view


RefactorInsight: Initial Architecture

—

34



RefactorInsight: Reworked Architecture

—

35



Takeaways

—
● Production-ready research tools are rare, but they do exist

● Integrate new things into common developers workflow
○ UX should be reconsidered though

● New ideas and use cases should be explored
○ extract refactoring changes into a separate commit

○ VCS information could be helpful for refactoring recommendation as well

36



37

Industry-Academia Collaboration

—



38

● Nikolaos Tsantalis et al.

● Zarina Kurbatova from the ML4SE research lab

● Vladimir Kovalenko from the ICTL research lab

● Andrey Sokolov and Svetlana Zemlyanskaya from the Data Analytics team

● The whole IntelliJ VCS team

● Our wonderful interns

Acknowledgements

—



39

@timofeybryksin

timofey.bryksin@jetbrains.com

https://jzuken.github.io

ML4SE Research Lab:

https://research.jetbrains.org/groups/ml_methods/

Thank you!

—

mailto:timofey.bryksin@jetbrains.com
https://jzuken.github.io
https://research.jetbrains.org/groups/ml_methods/


Questions for Discussion

● Why open source is not the must in academia?
○ what should we do to make the research more reproducible?

● Is engineering less prestigious than research?
○ comparing research tracks vs industry/tool tracks

● How do you discover new ideas?

40


